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Microscopic Calculation of the Dielectric
Susceptibility Tensor for Coulomb Fluids

L. S8 amaj1
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In a Coulomb fluid confined to a domain V, the dielectric susceptibility tensor
/V depends on the shape of V, even in the thermodynamic V � � limit. This
paper deals with the classical two-dimensional one-component plasma for-
mulated in an elliptic V-domain, equilibrium statistical mechanics is used. For
the dimensionless coupling constant 1=even positive integer, the mapping of
the plasma onto a discrete one-dimensional anticommuting-field theory provides
a new sum rule. This sum rule confirms the limiting value of /V predicted by
macroscopic electrostatics and gives a finite-size correction term to /V .

KEY WORDS: One-component plasma; two dimensions; sum rules.

1. INTRODUCTION

Classical Coulomb systems are prototypes for studying the effect of long-
range interactions in equilibrium statistical mechanics. In dimension &, the
Coulomb potential ,c at a spatial position r=(r1, r2,..., r&), induced by a
unit charge at the origin, is the solution of the Poisson equation

2,c(r)=&=&$(r) (1)

where =& is the surface area of the &-dimensional unit sphere; =2=2?,
=3=4?, etc. In particular, in two dimensions one has the logarithmic
potential

,c(r)=&ln(|r|�r0) (2)
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where the length scale r0 is set to unity, for simplicity. In what follows, we
will restrict the discussion to two and three dimensions, so all presented
formula containing & will be valid only for &=2, 3.

A general Coulomb system consists of s pointlike species :=1,..., s
with the corresponding charges q: , embedded in a fixed uniform neutraliz-
ing background of density n0 and charge density \0 . The most studied one-
component jellium or plasma (OCP) and two-component plasma (TCP)
correspond to s=1 (q1=q), \0=&qn0{0 and to s=2 (q1=&q2),
\0=n0=0, respectively. The Coulomb system is confined to a domain V,
which can be:

(1) infinite, V � R&;

(2) finite, bounded by an impermeable hard wall (for the sake of
simplicity, uncharged and with no image forces);

(3) semi-infinite, i.e., bounded by a wall, but infinite in at least one
of the parallel directions.

The symbol ( ...) V will denote the canonical averaging over the domain V
at the inverse temperature ;=1�kBT, under the system neutrality condition.
The microscopic total number and charge densities at r are given by

n̂(r)=:
i

$(r&ri ) (3a)

\̂(r)=:
i

q:i
$(r&ri ) (3b)

respectively, where the sums run over N particle indices. The canonical
average number and charge densities read

nV (r)=(n̂(r)) V , \V (r)=(\̂(r)) V (4)

At the two-particle level, one considers the two-body distribution

nV (r, r$)=� :
j{k

$(r&rj ) $(r$&rk)�V
(5a)

as well as its truncated form

nT
V (r, r$)=nV (r, r$)&nV (r) nV (r$) (5b)

and the truncated charge�charge correlation function

SV (r | r$)=(\̂(r) \̂(r$)) V&(\̂(r)) V (\̂(r$))V (6)
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In the case of the OCP, S is expressible as follows

SV (r | r$)=q2[nT
V (r, r$)+nV (r) $(r&r$)] (7)

The long-range tail of the Coulomb force causes screening, and thus
gives rise to exact constraints, sum rules, for the structure function S (see
review of ref. 1).

In bulk regime, limV � R& SV (r | r$)=S( |r&r$| ) is known to obey the
Stillinger�Lovett rules(2, 3) which imply the zeroth-moment (electroneutrality)
condition

| dr S(r)=0 (8)

and the second-moment condition

; | dr(r i )2 S(r)=
;
& | dr |r|2 S(r)

=&
1

?(&&1)
i=1,..., & (9)

For the OCP, the fourth moment of S is related to the isothermal com-
pressibility, (4�6) so that knowledge of the exact equation of state in two
dimensions(7) provides its explicit form.(8, 9) Very recently, (10) the sixth
moment of S for the two-dimensional (2d) OCP was derived using a renor-
malized Mayer expansion in density.(11) The formal analogues of the fourth
and sixth moments of S in the 2d OCP are the respective zeroth and
second moments of the truncated total number density correlation function
(n̂(r) n̂(r$))&(n̂(r))(n̂(r$)) in the 2d TCP, as was derived in ref. 12 from
analogies with critical systems and in ref. 13 directly by using diagrammatic
methods.

For finite systems, the zeroth-moment sum rule

|
V

dr SV (r | r$)=|
V

dr$ SV (r | r$)=0 (10)

only tells us that the total charge in the domain V is fixed. The information
analogous to the second-moment formula (9) is contained in the dielectric
susceptibility tensor /V , defined by

/ ij
V=

;
|V |

((P iP j ) V&(Pi ) V (P j ) V ) (11a)
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where

Pi=|
V

dr r i\̂(r) i=1,..., & (11b)

is the i th component of the total polarization in the system and |V | is the
volume. Within the linear-response theory, /V relates the average polariza-
tion to a constant applied field E, (Pi )=�&

j=1 / ij
V E j. With regard to (10),

the tensor /V is expressible in two equivalent ways,

/ ij
V=

;
|V | |V

dr1 |
V

dr2 r i
1r j

2 SV (r1 | r2)

= &
;

2 |V | |V
dr1 |

V
dr2(r i

1&r j
2)2 SV (r1 | r2) (12)

As V � R& one would intuitively expect that, according to the bulk second-
moment formula (9), the diagonal components / i

V=/ ii
V (i=1,..., &) tend to

the value

/ i
V � &

;
2 | dr(ri )2 S(r)=

1
2?(&&1)

(13)

However, this is not the case: due to surface effects, the /V limit depends
on the shape of V. Its value is predicted by macroscopic electrostatics for
homogeneously polarizable systems.(14, 15) In the case of elliptic (&=2) and
ellipsoidal (&=3) V-domains, one introduces the depolarization tensor TV

T ij
V=&

1
2?(&&1)

�2

�ri �r j |
V

dr$ ,c(r&r$) (14)

where r is an arbitrary point in V. It is the fundamental property of
the elliptic and ellipsoidal domains that the tensor TV is independent of the
point r # V, and depends only on the shape of V. With regard to the
Poisson equation (1), its diagonal elements T i

V=T ii
V are constrained by

�&
i=1 T i

V==& �[2?(&&1)]. In the limit V � R&, electrostatics yields

/i
V=

1
2?(&&1) T i

V

(15)

In the special case of a 2d disk or 3d sphere, TV is isotropic, so that T i
V=

=& �[2?&(&&1)]. Consequently,

/i
V �

&
=&

=
&

2?(&&1)
(16)

952 S8 amaj



in contradiction with the previously suggested estimate (13). The formula
(16) was checked and finite-size corrections were calculated in refs. 14 and
15 for the 2d OCP formulated on the disk for an exactly solvable case of
the dimensionless coupling 1=;q2=2.(16, 17)

This paper deals with the 2d OCP formulated in the elliptic domain,
which includes a circularly symmetric disk and the limiting case, a strip.
The statistics now depends on the only parameter��the coupling constant
1 (the particle density only scales appropriately the distance). At 1=even
integer, the 2d OCP is mappable onto a discrete 1d anticommuting-field
theory.(18, 19) It is shown that, in general, sum rules come from specific
unitary transformations of anticommuting variables, keeping a specific
``composite'' form of the fermionic action. A nontrivial transformation of
anticommuting variables is revealed to generate a new sum rule. For the
elliptic domain, this sum rule confirms microscopically the asymptotic
formula (15) and gives a finite-size correction term to / i

V explicitly in terms
of boundary contributions.

The paper is organized as follows. Section 2 recapitulates briefly the
mapping of the 2d OCP onto the 1d fermionic model. Section 3 establishes
a formalism of the unitary transformations of anticommuting variables,
which imply the known sum rules.(20) Complementary (to author's knowl-
edge as-yet-unknown) sum rules, nontrivial when some asymmetry of the
V-domain is present, are given as well. In the key Section 4, using a special
``nearest-neighbor'' transformation of anticommuting variables, one derives
a new sum rule providing a proper split of / i

V into its asymptotic (15) and
finite-size correction parts. In Appendix, by explicit calculations in the 2d
OCP on the disk at 1=2, a test of the results is presented.

2. MAPPING ONTO 1d FERMIONS

The model under consideration is the 2d OCP of N particles confined
to a domain V. For a point r # V, the cartesian (x, y), complex (z, z� ) or
polar (r, ,) coordinate representations will be suitably used. The neutraliz-
ing background of density n0=N�|V | induces the one-particle potential
&qn0 ,b(r) where

,b(r)=|
V

d2r$ ,c( |r&r$| ) (17)

For the elliptic V-domain of interest, in the reference frame defined by the
axis of the ellipse, x2�a2+ y2�b2=1, both tensors /V and TV are diagonal.
The fundamental independence of the depolarization tensor TV (14) of the
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point r # V and the invariance of ,b(r) with respect to the reflection along
the x or y axis imply

,b(r)=const&?T x
V x2&?T y

V y2 (18a)

with T x
V=b�(a+b), T y

V=a�(a+b). The corresponding electric field is
&qn0 Eb(r) where

Eb(r)=&{,b(r)=2?T x
V x x̂+2?T y

V y ŷ (18b)

x̂, ŷ being perpendicular unit vectors in x, y directions. In the circularly
symmetric case of the disk, a=b=R (radius), one has T x

V=T y
V=1�2, so

that

,b(r)=&?r2�2, Eb(r)=?r (19)

The total Boltzmann factor associated with a particle configuration [ri ] is
written as

exp _1n0 :
i

,b(ri )&1 :
i< j

,c( |ri&rj | )& (20)

For 1=2#, # being a positive integer, it was shown in ref. 18 that the
canonical partition function of the 2d OCP, ZV (we will omit in the nota-
tion the dependence on N ), can be expressed in terms of Grassmann
variables [! (:)

i , � (:)
i ] (:=1,..., #), defined on the sites i=0, 1,..., N&1 of a

discrete chain and satisfying ordinary anticommuting algebra and integra-
tion rules, (21) as follows:

ZV =| D� D! exp[SV (!, �)] (21a)

SV (!, �)= :
#(N&1)

i, j=0

5i wij 9j (21b)

Here, D� D!=>N&1
i=0 d� (#)

i } } } d� (1)
i d! (#)

i } } } d! (1)
i and the fermionic action

SV involves pair interactions of the ``composite'' variables

5i = :
N&1

i1 ,..., i#=0

(i1+ } } } +i#=i )

! (1)
i1

} } } ! (#)
i#

(22a)

9j= :
N&1

j1 ,..., j#=0

( j1+ } } } + j#= j )

� (1)
j1

} } } � (#)
j#

(22b)
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i.e., the products of # anticommuting-field components with a given sum of
site indices. The interaction strength is given by

w ij=|
V

d2z ziz� jw(z, z� ) (23)

where w(r)=exp[1n0,b(r)]. Denoting by

( } } } )=
1

ZV
| D� D! } } } exp[SV (!, �)] (24)

the averaging over the 1d fermionic system, the particle-number density (4)
can be expressed as

nV (r)=w(z, z� ) :
#(N&1)

i, j=0

(5i 9j ) ziz� j (25)

the two-body distribution (5a) and its truncation (5b) as

nV (r1 , r2)=w(z1 , z� 1) w(z2 , z� 2) :
#(N&1)

i1 , j1 , i2 , j2=0

(5i1
9 j1

5i2
9j2

) z i1
1 z� j1

1 z i2
2 z� j2

2

(26a)

nT
V (r1 , r2)=w(z1 , z� 1) w(z2 , z� 2) :

#(N&1)

i1 , j1 , i2 , j2=0

(5i1
9 j1

5i2
9j2

) T z i1
1 z� j1

1 z i2
2 z� j2

2

(26b)

where (5i1
9j1

5i2
9j2

) T=(5i1
9 j1

5i2
9 j2

)&(5i1
9 j1

)(5i2
9j2

) . For the disk
(19), since the Boltzmann weight w(r) possesses circular symmetry, the
interaction matrix wij takes the diagonal form,

wij=$ ij wi , wi=|
V

d2r r2iw(r) (27)

Owing to the ``diagonalization'' of the action, SV=�i 5i wi 9i , only the
fermionic correlators (5i1

9j1
5i2

9j2
} } } ) with i1+i2+ } } } = j1+ j2+ } } }

survive.

3. ORDINARY SUM RULES AND THEIR COMPLEMENTS

Sum rules result from the fermionic representation of the 2d OCP by
specific transformations of anticommuting variables, keeping the composite
nature of the action SV (21b).
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Let us first rescale by a constant one of the field components, say
[!(1)],

!(1)
i � +! (1)

i i=0, 1,..., N&1 (28)

Jacobian of the transformation equals to +N and the fermionic action SV

transforms to +SV . Consequently,

ZV =+&N | D� D! exp \ + :
#(N&1)

i, j=0

5i wij 9j+ (29a)

ZV (5i 9j ) =+&N+1 | D� D! 5i 9j exp \ + :
#(N&1)

k, l=0

5k wkl 9l+ (29b)

etc. ZV , a Grassmanian integral, is independent of +, thus its derivative
with respect to + is zero for any value of +. For the special case +=1, the
equality � ln ZV��+| +=1=0 implies

&N+ :
#(N&1)

i, j=0

wij (5i 9j ) =0 (30)

which, after substituting (23), regarding (25) and setting N=n0 |V |, results
in the trivial neutrality condition

|
V

d2r[nV (r)&n0]=0 (31)

Analogously, the equality �[ZV (5i 9j )]��+| +=1=0 yields

&(N&1)(5i 9j )+ :
#(N&1)

k, l=0

wkl(5i 9j 5k 9l ) =0 (32)

which is readily shown to be equivalent to the neutrality relation (10).
Let us now consider another linear transformation of all !-field com-

ponents,

! (:)
i � *i! (:)

i i=0, 1,..., N&1; :=1,..., # (33a)

or all �-field components,

� (:)
j � * j� (:)

j j=0, 1,..., N&1; :=1,..., # (33b)
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Jacobian of both transformations equals to *#N(N&1)�2 and the action transforms
as SV � �#(N&1)

i, j=0 *i5i wij 9 j under (33a) and as SV � �#(N&1)
i, j=0 * j5i wij 9 j

under (33b). Thus,

ZV =*&#N(N&1)�2 | D� D! exp \ :
#(N&1)

i, j=0

* i 5i wij 9 j+
(34a)

ZV =*&#N(N&1)�2 | D� D! exp \ :
#(N&1)

i, j=0

* j5i wij 9 j+
ZV (5i 9j )=*&#N(N&1)�2+i | D� D! 5i 9j exp \ :

#(N&1)

k, l=0

*k5k wkl9l+
(34b)

ZV (5i 9j )=*&#N(N&1)�2+ j | D� D! 5 i 9 j exp \ :
#(N&1)

k, l=0

* l5kwkl9 l+
The equality � ln ZV ��*|*=1=0 implies

& 1
2 #N(N&1)+ :

#(N&1)

i, j=0

iw ij (5i 9j )=0 (35a)

& 1
2 #N(N&1)+ :

#(N&1)

i, j=0

jw ij (5i 9j )=0 (35b)

On account of (30), this is equivalent to the couple of complex-conjugate
equations

1
2 #N(N&1)+N=| d2z w(z, z� ) :

#(N&1)

i, j=0

(5i 9j ) �+(zi+1z� j ) (36a)

1
2 #N(N&1)+N=| d2z w(z, z� ) :

#(N&1)

i, j=0

(5i 9j ) �&(zi z� j+1) (36b)

where we have introduced the derivative operators

�+=
1
2 \

�
�x

+
1
i

�
�y+ �&=

1
2 \

�
�x

&
1
i

�
�y+ (37)

(�+#�z , �&#�z� ). They act on complex coordinates according to

�+z=1, �+z� =0; �&z=0, �&z� =1
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With ln w(z, z� )=1n0,b(r), ,b given by (17), it is easy to verify validity of
the equalities

|
V

d2z[�+ ln w(z, z� )] zn0=|
V

d2z[�& ln w(z, z� )] z� n0=&1
2 #N 2 (38)

Then, after some algebra, Eqs. (36) take the form

N \1&
#
2+=|

V
d2z �+[zn(z, z� )]&|

V
d2z[�+ ln w(z, z� )] z $nV (z, z� )

(39a)

N \1&
#
2+=|

V
d2z �&[z� n(z, z� )]&|

V
d2z[�& ln w(z, z� )] z� $nV (z, z� )

(39b)

with $nV (z, z� )=nV (z, z� )&n0 . Let us denote by �V the positively oriented
contour enclosing the domain V : �V is defined parametrically as follows
x=X(,), y=Y(,); ,0�,�,1 . In particular, the ellipse contour admits
the parametrization X(,)=a cos ,, Y=b sin ,; 0�,�2?. Integrals over
the V-domain can be expressed in terms of the �V-contour integrals accord-
ing to the formula

|
V \

�Q
�x

&
�P
�y+ dx dy=|

�V
(P dx+Q dy) (40a)

where

|
�V

P(x, y) dx=|
,1

,0

d, P[X(,), Y(,)] X$(,)

(40b)

|
�V

Q(x, y) dy=|
,1

,0

d, Q[X(,), Y(,)] Y$(,)

Thus, summing and subtracting Eqs. (39a) and (39b), one gets respectively

1n0 |
V

d2r[r } Eb(r)] $nV (r)=N \2&
1
2 +&|

,1

,0

d, nV (X, Y )(XY$&X$Y )

(41a)

1n0 |
V

d2r[r_Eb(r)]z $nV (r)=|
,1

,0

d, nV (X, Y )(XX$+YY$) (41b)

where [r_Eb]z=xE y
b & yE x

b . Equation (41a) was obtained for the disk
(see Eq. (4.16) in ref. 20) and represents a generalization of the contact
theorem for the plane hard wall.(22, 23) The last theorem results from (41a)
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by moving the origin to the boundary and in the radius R � � limit. The
new complementary relation (41b) is informative for a generally deformed
domain V.

The equality �[ZV (5i9j )]��*|*=1=0 results in

[&1
2 #N(N&1)+i](5i9j ) + :

#(N&1)

k, l=0

kwkl (5i 9j 5k9 l) =0 (42a)

[&1
2 #N(N&1)+ j](5i9j ) + :

#(N&1)

k, l=0

lwkl (5i 9j 5k9 l) =0 (42b)

These relations can be rewritten with the aid of Eqs. (30), (32) and (35) as
follows

(i+1)(5i 9j )=& :
#(N&1)

k, l=0

(k+1) wkl (5i9 j 5k9l) T (43a)

( j+1)(5i9j )=& :
#(N&1)

k, l=0

(l+1) wkl (5i9 j 5k 9l) T (43b)

It is a simple task to pass from (43) to

w(r1) �+
1 _nV (r1) z1

w(r1) &=&|
V

d2r2 w(r2) �+
2 _nT

V (r1 , r2) z2

w(r2) & (44a)

w(r1) �&
1 _nV (r1) z� 1

w(r1) &=&|
V

d2r2 w(r2) �&
2 _nT

V (r1 , r2) z� 2
w(r2) & (44b)

with the obvious generalization of operators (37):

�+
i zj=$ij , �+

i z� j=0; �&
i zj=0, �&

i z� j=$ij

Summing and subtracting (44a) and (44b) one finally arrives at

;n0 |
V

d2r2[r2 } Eb(r2)] SV (r1 | r2)

=&2nV (r1)&r1 } {1nV (r1)&|
,1

,0

d, nT
V [r1 ; (X, Y )](XY$&X$Y )

(45a)

;n0 |
V

d2r2[r2_Eb(r2)]z SV (r1 | r2)

=&(r1_{1)z nV (r1)+|
,1

,0

d, nT
V [r1 ; (X, Y )](XX$+YY$) (45b)
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Relation (45a) with r1=0 was derived for the disk in ref. 20 [see Eq. (4.25)].
In the R � � limit of the disk, it is related to the dipole sum rule for the
plane hard wall.(24) The complementary Eq. (45b) is new.

4. NEW SUM RULE

Let us pose the following question: provided that the anticommuting
fields under consideration [! (:)

i ] #
:=1 are mapped onto [! (:)

i (t)]#
:=1 by the

nearest-neighbor transformation

�! (:)
i (t)
�t

=ai! (:)
i+1(t)+bi! (:)

i&1(t), ! (:)
i (t=0)=! (:)

i (i=0, 1,..., N&1)

(46)

with aN&1=b0=0 and t being a free parameter, does there exist a choice
of the coefficients [ai , bi ] for which also the composite variables [5i ]
(22a) transform themselves according to the nearest-neighbor scheme

�5i (t)
�t

=a~ i 5i+1(t)+b� i5i&1(t), 5 i (t=0)=5i [i=0, 1,..., #(N&1)]

(47)

with a~ #(N&1)=b� 0=0? The answer is affirmative(19): it can be proven by a
direct computation that if one chooses in (46)

ai=A(i+1) bi=B(N&i ) (46$)

the consequent [5i (t)] fulfil the differential Eq. (47) with

a~ i=A(i+1) b� i=B[#(N&1)+1&i] (47$)

Writting formally the solution of (46) as

! (:)
i (t)= :

N&1

j=0

cij (t) ! (:)
j (48)

there holds

�cij (t)
�t

=a ici+1, j (t)+b ici&1, j (t), cij (0)=$ij (49)

960 S8 amaj



Jacobian of the mapping equals to det cij (t)| N&1
i, j=0# |c| for each of the

!(:)-components. Its derivative with respect to t is given by

�
�t

|c|= :
N&1

i, j=0

�cij

�t
Cij (50)

where Cij (t) is the cofactor of element cij (t). In combination with Eq. (49),
the orthogonality condition

:
N&1

j=0

ckj Cij=$ ik |c| (51)

thus leads to � |c|��t=0, i.e., |c|=const=1 for each !(:)-component. We
conclude that Jacobian=1. For our purpose it is sufficient to consider the
transformation (46), (47) with A=1 and B=0; the explicit solution reads

! (:)
i (t)= :

N&1

j=i \
j
i + t j&i!(:)

j , 5i (t)= :
#(N&1)

j=i \ j
i + t j&i 5j (52)

The insertion of the transformation (52) into the partition function,

ZV =| D� D!(t) exp { :
#(N&1)

i, j=0

5i (t) wij9 j=
=| D� D! exp { :

#(N&1)

i, j=0

[5i+t(i+1) 5i+1+O(t2)] wij 9j = (53)

with 5#(N&1)+1#0 automatically assumed, and the consequent application
of the condition � ln ZV��t| t=0=0 lead to

:
#(N&1)

i, j=0

(i+1) wij (5i+19j ) =0 (54a)

:
#(N&1)

i, j=0

( j+1) wij (5i9j+1) =0 (54b)

where the second formula originates from the t-transformation of [�(:)]
anticommuting fields. The consequent couple of complex-conjugate equations

|
V

d2r[�+ ln w(r)] nV (r)=|
V

d2r �+nV (r) (55a)

|
V

d2r[�& ln w(r)] nV (r)=|
V

d2r �&nV (r) (55b)
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is expressible by using the previously developed formalism as follows

1n0 |
V

d2r E x
b(r) nV (r)=&|

,1

,0

d, nV (X, Y ) Y$ (56a)

1n0 |
V

d2r E y
b(r) nV (r)=|

,1

,0

d, nV (X, Y ) X$ (56b)

The t-independence of

ZV (5i (t) 9j ) t=| D� D![5i+t(i+1) 5 i+1+O(t2)] 9j

_exp { :
#(N&1)

k, l=0

[5k+t(k+1) 5k+1+O(t2)] wkl9l=
(57)

and similarly of ZV (5i9j (t)) t manifests itself at the lowest t1 level as

(i+1)(5i+1 9j )+ :
#(N&1)

k, l=0

(k+1) wkl (5i9 j 5k+1 9l) =0 (58a)

( j+1)(5i9 j+1)+ :
#(N&1)

k, l=0

(l+1) wkl (5i9 j 5k9l+1) =0 (58b)

Due to (54), the four-correlators (5i9j 5k+1 9l) in (58a) and
(5i 9j 5k9 l+1) in (58b) can be substituted by the truncated ones
(5i 9j 5k+19l) T and (5 i9 j 5k9 l+1) T, respectively. Equations (58a) and
(58b) are thus expressible as

w(r1) �+
1 _nV (r1)

w(r1) &=&|
V

d2r2 w(r2) �+
2 _nT

V (r1 , r2)
w(r2) & (59a)

w(r1) �&
1 _nV (r1)

w(r1) &=&|
V

d2r2 w(r2) �&
2 _nT

V (r1 , r2)
w(r2) & (59b)

These relations can be further simplified to the form

|
V

d2r2[�+
2 ln w(r2)] SV (r1 | r2)�q2=�+

1 nV (r1)+|
V

d2r2 �+
2 nT

V (r1 , r2)

(60a)

|
V

d2r2[�&
2 ln w(r2)] SV (r1 | r2)�q2=�&

1 nV (r1)+|
V

d2r2 �&
2 nT

V (r1 , r2)

(60b)
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For the elliptic V-domain of interest it holds ln w(r)=1n0(const&?T x
V x2

&?T y
V y2). Summing and subtracting Eqs. (60a) and (60b) one then finds

&2?;n0T x
V |

V
d2r2 x2SV (r1 | r2)=

�
�x1

nV (r1)+|
V

d2r2

�
�x2

nT
V (r1 , r2)

(61a)

&2?;n0T y
V |

V
d2r2 y2SV (r1 | r2)=

�
�y1

nV (r1)+|
V

d2r2

�
�y2

nT
V (r1 , r2)

(61b)

respectively.
To get the diagonal elements of the dielectric susceptibility tensor /V

(12), one applies �V d2r1 x1 to (61a) and �V d2r1 y1 to (61b), with the result

/x
V=

1
2?T x

V

&
a+b

ab
1

2?2n0q2 |
2?

0
d, |

V
d2r1 x1SV[r1 | (X, Y )] cos ,

(62a)

/ y
V=

1
2?T y

V

&
a+b

ab
1

2?2n0q2 |
2?

0
d, |

V
d2r1 y1SV[r1 | (X, Y )] sin ,

(62b)

Here, integration per partes was combined with the sum rule (31) to obtain

|
V

d2r1 x1

�
�x1

nV (r1)=|
V

d2r1

�
�x1

[x1nV (r1)]&n0 |V |

|V |=?ab, and analogously for the y-component. Equations (62) become
simpler in the symmetric case of the disk of radius R, /x

V=/ y
V=/� V ,

/� V =
1
?

&
1
R

1
?n0q2 |

2?

0

d,
2? |

V
d2r1SV[(r1 , ,1) | (R, ,)] r1 cos(,1&,)

=
1
?

&
1
R

1
?n0q2 |

V
d2r xSV[r | (R, 0)]

=
1
?

&
1
R

1
?n0q2 |

V
d2r ySV[r | (0, R)] (63)
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where the dependence of SV[(r1 , ,1) | (R, ,)] on the angle difference
|,1&,| was taken into account. Equation (63) can be formally rewritten as

/� V =
1
?

&
1
R

1
?n0q2 (Px\̂[(R, 0)]) T

V

=
1
?

&
1
R

1
?n0q2 (P y\̂[(0, R)]) T

V (64)

The final results (62)�(64) mean an explicit split of / i
V into its asymptotic

1�(2?T i
V ) part [see the prediction (15) of macroscopic electrostatics] and

the finite-size correction term. To show this fact for the disk, with regard
to the sum rule (10) one can write

|
V

d2r xSV[r | (R, 0)]=&|
V

d2r(R&x) SV[r | (R, 0)] (65)

Moving the origin to the boundary, x$=R&x and y$= y, the integrals on
the rhs of (63) reflect the dipole moment seen from the boundary, which is
known to converge to a finite value in the thermodynamic limit. We there-
fore conclude that the correction term t1�R. Owing to a slow power-law
decay of correlations along a plane wall, (25, 26) one has to be cautious when
identifying the integrals of type (65) with their asymptotic hard-wall coun-
terparts. Possible vagaries and a check of Eq. (63) are documented in
Appendix via the exactly solvable 2d OCP at coupling 1=2.

In conclusion, although the above results (62)�(64) were derived
strictly for the coupling constant 1=2Vpositive integer, it is reasonable to
suppose their validity for an arbitrary 1 in the whole fluid regime. The
extension of the treatment to the case of a charged wall and in the presence
of image forces is straightforward. A potential generalization of the results
to higher dimensions and to the TCP requires, due to a lack of the fer-
mionic formalism, to search for a new method which, on the one hand,
reproduces our findings for the 2d OCP and, on the other hand, admits a
more general applicability like the linear-response theory.

APPENDIX

When 1=2 (#=1), the 2d OCP on the disk of radius R is exactly
solvable.(16, 17, 25) The fermionic correlators are given by

(5i 9j ) =
1
wi

$ij , (5i9 j 5k 9l)=
1

wiwk
($ij $kl&$il$jk) (A1)
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etc., where [wi ] (27) are diagonal interaction strengths,

wi=|
V

d2r r2iw(r)=? |
N

0
dt ti exp(&t) (A2)

written in the units of ?n0=1. The dielectric susceptibility tensor is express-
ible as

/� V=
1

?R2 Re {|V
d2r r2n(r)+|

V
d2r1 |

V
d2r2 z� 1z2nT

V (r1 , r2)= (A3)

It is straightforward to verify validity of the relations

|
V

d2r r2n(r)= :
N&1

i=0

wi+1

wi
(A4a)

|
V

d2r1 |
V

d2r2 z� 1z2nT
V (r1 , r2)=& :

N&1

i=1

wi

wi&1

(A4b)

so that /� V=wN �(?NwN&1). By integration per partes one derives wi=
iwi&1&?N i exp(&N ). Consequently,

/� V=
1
?

&
N N&1 exp(&N )

wN&1

(A5)

On the other hand,

1
q2 |

V
d2r xSV[r | (R, 0)]=Rn(R)+|

V
d2r xnT

V[r; (R, 0)] (A6)

Since

Rn(R)=w(R) :
N&1

i=0

R2i+1

wi
(A7a)

|
V

d2r xnT
V [r; (R, 0)]=&w(R) :

N&1

i=1

R2i&1

wi&1

(A7b)

one arrives at

1
q2 |

V
d2r xSV[r | (R, 0)]=

N N exp(&N )
RwN&1

(A8)

965Microscopic Calculation of the Dielectric Susceptibility Tensor



Inserting (A8) into (63), the exact result (A5) is recovered (in the units of
?n0=1).

As N � �, the asymptotic form of wN&1 (A2) can be calculated by the
saddle-point method in the gaussian approximation:

wN&1t
?3�2

- 2
RN N&1 exp(&N ) _1+O \ 1

R+& (A9)

Consequently, the quantity (A8), transcribed according to (65), acquires
the finite value

lim
N � �

&
1
q2 |

V
d2r(R&x) SV[r | (R, 0)]=

- 2
?3�2 (A10)

as was expected.
One may be tempted to identify formula (A10) with its obvious plane

hard-wall counterpart. Using the explicit result(25) for the hard wall
localized at x=0 (plasma appears in the half-space x�0),

n(x)=n0

2

- ? |
�

0

exp[&(t&x - 2)2]
1+,(t)

dt (A11a)

nT(x1 , x2 ; | y1& y2 | )

=&n2
0 exp[&(x1&x2)2]

_} 2

- ? |
�

0

exp[&[t&(x1+x2)�- 2]2&it( y1& y2) - 2]
1+,(t)

dt }
2

(A11b)

where , is the error function ,(t)=(2�- ?) � t
0 exp(&u2) du, one obtains

&
1
q2 |

�

0
dx x |

�

&�
dy S(0, x; y)=

1

- 2 ?3�2
(A12)

which differs from (A10) by factor 2. This discrepancy is intuitively
associated with the slow power-law decay of correlations along the plane
wall: an arbitrarily small deformation of the boundary towards the circle
has a strong impact on this property. The analytical (Debye�Hu� ckel
approximation) and numerical (Monte Carlo simulation) studies of the
surface charge correlations for finite Coulomb systems were given in ref. 27.
The asymptotic form of these correlations is expected to depend on the
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shape of the plasma, but to be otherwise universal. The exact 1=2 solu-
tion for the ``soft-wall'' version of the 2d OCP with a quadrupolar field, (28)

corresponding to a very large elliptic background, supports this finding.
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